Evolution of interstellar ices.

نویسندگان

  • L J Allamandola
  • M P Bernstein
  • S A Sandford
  • R L Walker
چکیده

Infrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Ices in molecular clouds are dominated by the very simple molecules H2O, CH3OH, NH3, CO, CO2, and probably H2CO and H2. More complex species including nitriles, ketones, and esters are also present, but at lower concentrations. The evidence for these, as well as the abundant, carbon-rich, interstellar, polycyclic aromatic hydrocarbons (PAHs) is reviewed. Other possible contributors to the interstellar/pre-cometary ice composition include accretion of gas-phase molecules and in situ photochemical processing. By virtue of their low abundance, accretion of simple gas-phase species is shown to be the least important of the processes considered in determining ice composition. On the other hand, photochemical processing does play an important role in driving dust evolution and the composition of minor species. Ultraviolet photolysis of realistic laboratory analogs readily produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including amides, ketones, and polyoxymethylenes (POMs). Inclusion of PAHs in the ices produces many species similar to those found in meteorites including aromatic alcohols, quinones and ethers. Photon assisted PAH-ice deuterium exchange also occurs. All of these species are readily formed and are therefore likely cometary constituents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infrared observations of hot gas and cold ice toward the low mass protostar Elias 29 ⋆

We have obtained the full 1-200 μm spectrum of the low luminosity (36 L⊙) Class I protostar Elias 29 in the ρ Ophiuchi molecular cloud. It provides a unique opportunity to study the origin and evolution of interstellar ice and the interrelationship of interstellar ice and hot core gases around low mass protostars. We see abundant hot CO and H2O gas, as well as the absorption bands of CO, CO2, H...

متن کامل

Formation of Interstellar Ices behind Shock Waves

We have used a coupled dynamical and chemical model to examine the chemical changes induced by the passage of an interstellar shock in well shielded regions. Using this model we demonstrate that the formation of H2O in a shock will be followed in the post–shock phase by depletion of the water molecules onto the grain surfaces. To attempt to discriminate between the creation of ices behind shock...

متن کامل

Pahs and Astrobiology

In dense molecular clouds, the birthplace of stars and planets, interstellar atoms and molecules freeze onto extremely cold dust and ice particles. These ices are processed by ultraviolet light and cosmic rays forming hundreds of far more complex species, some of astrobiological interest. Eventually, these rain down on primordial planets where they take part in the young chemistry on these new ...

متن کامل

Evolution of interstellar dust and its relevance to life's origin: laboratory and space experiments.

A scheme is presented for an analog investigation of long term irradiation of ices and organics following the cyclic evolution of interstellar dust. The irradiation is proposed to be performed at cryogenic temperatures on a space platform, and with an enhancement of the solar ultraviolet flux using a concave mirror, grating combination which eliminates the visual and infrared from the sample su...

متن کامل

Laser desorption time-of-flight mass spectrometry of ultraviolet photo-processed ices.

A new ultra-high vacuum experiment is described that allows studying photo-induced chemical processes in interstellar ice analogues. MATRI(2)CES - a Mass Analytical Tool to study Reactions in Interstellar ICES applies a new concept by combining laser desorption and time-of-flight mass spectrometry with the ultimate goal to characterize in situ and in real time the solid state evolution of organ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Space science reviews

دوره 90 1-2  شماره 

صفحات  -

تاریخ انتشار 1999